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ABSTRACT 

The objectives of this study were to measure all ground motions in the 

outrunning region produced by the Mineral Rock Event of Operation Mine 

Shaft.  The Mineral Rock Event was a duplication of the Mine Ore Event of 

the same series, and was a 100-ton sphere of TNT placed with the center of 

gravity 0.9 charge radius (about 7-2 feet) above the ground surface. 

Accelerometers and velocity gages were installed from 200 to 500 feet 

from ground zero at depths of 2, 10, and 18 feet.  Time histories of all 

successfully recorded gages are presented in Appendix A along with integrals 

of each record. 

The outrunning acceleration data were partially obscured by a cable 

noise problem.  This noise was blast overpressure-induced and unfortunately 

was present during the significant outrunning motion onset, i.e., before 

airblast arrival at the gage locations.  Although these data are limited, 

they are discussed along with the outrunning velocity data.  Airblast- 

induced motions are treated in detail. 

Vertical airblast-induced accelerations were found to attenuate 

rapidly with distance and depth from the maximum downward acceleration of 

32 g's at the 200-foot range and 2-foot depth. These accelerations were 

correlated with overpressure, and, for the 2-foot depth, acceleration-to- 

overpressure ratios averaged 0.2 g/psi, which is considerably less than for 

a similar detonation over soil. 

Vertical particle velocities also attenuated with distance and depth 

from the maximum value of 1.3 ft/sec at the 200-foot range and 2-foot 

depth. Horizontal velocities followed much the same pattern, with a peak 

value of 2 ft/sec at the same location.  Outrunning motion was noted on 

all horizontal velocity gage records. For the vertical component, out- 

running motion was not apparent at the 250-foot range, but was of signifi- 

cant magnitude at the 500-foot range. 

Vertical downward displacements of a high confidence level were limited 

to the 250-foot range and were found to be O.OOoO to 0.0075 foot.  Horizon- 

tal displacements were successfully computed from acceleration and velocity 

records, and at the 250-foot range were three to four times as large as the 

vertical displacements. 
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT 

British units of measurement used in this report can be converted to metric 
units as follows. 

Multiply By To Obtain 

inches 

feet 

miles 

pounds 

ounces 

tons (2,000 pounds) 

pounds per square inch 

pounds per cubic foot 

feet per second 

25.1+ 

0.301+8 

1.6093M+ 

O.U53592U 

23.3^952 

0.907185 

6.89^757 

16.0185 

0.3048 

millimeters 

meters 

kilometers 

kilograms 

grams 

megagrams 

kilonewtons per square meter 

kilograms per cubic meter 

meters per second 
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CHAPTER 1 

INTRODUCTION 

1.1 OBJECTIVE 

The objective of this study was to obtain and analyze ground motion 

measurements in the outrunning region for a high explosive (HE) surface 

burst over rock. 

1.2 BACKGROUND 

Rational design of missile launch and control systems requires knowl- 

edge of the free-field response of geological media to explosioi.s which 

produce significant loadings of the ground surface.  The phenomenon of out- 

running ground motion is not well understood, and very little experimental 

data are available for design purposes.  The Mine Shaft Series presented an 

excellent opportunity to supplement the meager amount of empirical data on 

hand.  A rather limited program was undertaken on the first two events, 

Mine Under and Mine Ore (Reference l), and the results suggested that a 

more ambitious program on Event Mineral Rock would be worthwhile.  The 

charge weights and geometries for these events are given in Table 1.1. 

While scaling of data from these HE tests to the nuclear case is less than 

exact, results of explosive tests can be extremely useful in verification 

of calculational techniques which are being developed for predicting ground 

shock from nuclear explosions. 

1.3 GROUND MOTION PREDICTIONS 

Since the amplitude and frequency ranges of instrument systems are 

limited, reasonably accurate predictions of ground shock phenol 

imperative for maximum data recovery and integrity.  Theoretical predic- 

tion techniques currently available for above-ground detonations were de- 

veloped primarily for superseismic ground shock in alluvial-type soils, 

A table of factors for converting British units of measurement used in 
Table 1.1 and elsewhere in this report to metric units is given on page 



and extension of these to a hard rock environment was not deemed appro- 

priate.  Consequently, gage and recording system set ranges were selected 

on the basis of the limited far-out data acquired on Events Mine Ore and 

Mine Under and extrapolations of the close-in data from the Mine Ore Event 

(Reference l). Predictions of peak motions for the parameters to be 

measured, i.e., horizontal acceleration (AH), vertical acceleration (AV), 

horizontal velocity (UH), and vertical velocity (UV), were made and are 

listed in Table 1.2 for the locations of interest. 
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TABLE 1.1 EVENTS IN WHICH OUTRUNNING MOTION DATA HAVE BEEN OBTAINED AT 
THE CEDAR CITY TEST SITE 

Event Date of 
Detonation 

Yield Charge 
Radius 

it to 

Center of 
Charge 

Mine Under 

Mine Ore 

Mineral Rock 

22 Oct 68 

12 Nov 68 

8 Oct 69 

tons TNT 

100 

100 

100 

feet 

8 

8 
g 

lU.2 

7.2 

7.2 

TABLE 1.2  GROUND MOTION PREDICTIONS 

Peak predicted values are downward (negative) values for vertical motions 
and outward (positive) values for horizontal motions.  AV--vertical accel- 
eration; AH--horizontal acceleration; UV--vertical velocity; UH—horizontal 
velocity. 

Distance Depth Peak Predictions 

AY AH UV UH 

feet 

200 

250 

300 

Uoo 

500 

feet g's g's ft/sec ft/ sec 

2 25 25 
a a 

18 12 12 a a 

2 18 18 0.3 • 
10 13 13 0.2 0.5 
18 8 8 0. 1 0.2 

2 10 10 a a 

10 7 7 
•1. a 

18 h k • 1 •i. 

2 5 L> 
a a 

3 
•1 • 

J.U i 
18 2 2 a •> 

2 3 3 0.06 J.lk 
10 2 2 a a 
18 l 1 a •i 

Not measured. 
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CHAPTER 2 

PROCEDURE 

2.1 DESCRIPTION OF TEST SITE AND EVENT 

The site of the Mine Shaft Series was in the Three Peaks area of south- 

western Utah, roughly 8 miles northwest of Cedar City. The Mineral Rock 

Event was a 100-ton TNT sphere whose radius was approximately 8 feet and 

whose center of gravity was 7.2 feet (0.9 charge radius) above the ground 

surface.  The event was detonated on 8 October 1969- 

The test site itself was an iron-rich intrusion covered with a thin 

layer of sandy silt and somewhat weathered rock having a maximum surface 

relief of approximately k  feet (Reference 2). 

A detailed presentation of the rock properties is found in Reference 3- 

Briefly, the rock was classified as a tonalite according to the system of 

Shand (Reference H), and results of laboratory analysis of the rock indi- 

cated a specific gravity of 2.6, a laboratory specimen compression wave ve- 

locity of 13,000 ft/sec, a porosity of 5-0 percent (relatively high com- 

pared to granite, dolomite, etc.), and nonlinear hysteretic stress-strain 

behavior.  Refraction seismic surveys (Reference 5) conducted in the field 

showed generally lower seismic velocities than were obtained with the lab- 

oratory specimen.  These lower velocities were found to be related to the 

direction of the major joint systems, which occurred predominately in a 

north-south direction.  Seismic velocities of 9?700 to 12,200 ft/sec were 

observed on traverses parallel to the jointing (north-south), and from 

8,000 to 95^00 ft/sec transverse to the joints (east-west). 

2.2 INSTRUMENTATION LAYOUT 

Thirty-six ground motion gages were installed for this project, in- 

cluding 28 accelerometers and 8 particle velocity gages.  These gages were 

installed at 1^- locations ranging from 200 to 500 feet from ground zero 

(GZ) and at depths of from 2 to 18 feet.  The gage layout is presented in 

Table 2.1 and is shown graphically in Figure 2.1. 

All gage locations were along a single radial line which lay roughly 

E 10 S of GZ.  This line was an extension of the easterly gageline 

12 



instrumented for the close-in measurement program (Reference 6) which cov- 

ered the region from Uo to 110 feet from GZ. Actual gage locations were 

varied slightly from a true radial in order to maintain, as closely as pos- 

sible, the desired distance from GZ and yet to locate the gages in a rea- 

sonably competent outcrop of rock which required a minimal removal of 

overburden. 

The system of gage identification used in this report was designed to 

be self-explanatory, Listing in order the distance from GZ, the gage depth, 

and gage type and orientation.  The code consists of a three-digit number 

giving the horizontal distance in feet, a one- or two-digit number giving 

the depth below surface in feet, and a two-letter code indicating the gage 

type and orientation.  Gage types are broken down into accelerometers, 

coded as A, and velocity gages, represented by U.  V represents vertical 

and H horizontal for the gage orientation.  Thus for example, Gage 250- 

LO-AH was a horizontal accelerometer located 250 feet from GZ and at a 

depth of 10 feet. 

2.3  INST RUMENTATI ON 

2.3-1 Gages and Calibration.  Of the 28 accelerometers installed for 

this study, 18 were Endevco Model 226? semiconductor strain gage types, 8 

were Statham Model A6°TC gages, and 2 were Consolidated Electrodynai; Irs 

Corporation (CEC) Model 4-202 strain gage models.  The Endevco gages are 

undamped and have a natural frequency of 31 kHz.  The Statham and CEC 

gages are damped to 0.7 times critical and have natural frequencies 

230 to 500 Hz, depending on range. 

The particle velocity gages were a commercially available CEC version 

of the Sandia Corporation Model DX-B (Reference 7).  This gage, developed 

under a Defense Atomic Support Agency (now Defense Nuclear Agency) contract, 

is a greatly overdamped mechanically integrating accelerometer.  With vari- 

ous modifications for individual users, it is the "standard" particle ve- 

locity gage for ground shock measurements, and has proved reliable on a 

number of field experiments. 

All gages were calibrated in-house at the U. S. Army Engineer Water- 

ways Experiment Station (WES). All accelerometers were calibrM I 
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statically on a spin table with proper cable lengths attached.  Calibration 

resistors were then selected for each gage which gave an output of known 

acceleration when shunted across an arm of the bridge circuit. 

The velocity gages were calibrated by allowing the seismic mass (a 

pendulum) to swing through its arc under the pull of gravity. A calibra- 

tion curve was produced with a slope of 1 g for horizontal gages and 2 g's 

for vertical gages.  Calibration resistors were selected which, when 

shunted, gave an output equivalent to a known velocity. 

Calibration resistors were manually shunted, and outputs were recorded 

just prior to shot time, in case of failure of the automatic stepping cir- 

cuit. At 30 seconds before shot time, all resistors were again shunted, 

this time automatically. 

2.3-2 Recording System.  Signal conditioning equipment for the accel- 

erometers consisted of operational amplifiers designed and fabricated by 

WES.  These amplifiers are solid state units having a frequency response of 

0 to 10 kHz. 

CEC 1-113B (System D) carrier-demodulator amplifiers were used with 

velocity gages.  These units have a frequency response of 600 Hz when termi- 

nated with the design load of roughly 70 ohms (a galvanometer).  On the 

Mineral Rock Event, however, the System D's were used to feed a tape driver 

amplifier, which is a high-impedance load, cutting the frequency response 

to about 100 Hz. 

All data were recorded on CEC VR-3300 FM magnetic tape recorders. 

Twelve channels of data were recorded on each machine, along with a 

reference track and IRIG B time code. 

All signal conditioning and data recording equipment was housed in two 

recording vans located some 3>000 feet from GZ.  These vans were parked be- 

hind timber and earth revetments to provide protection from airblast and 

ejecta.  Figure 2.2 shows the recording van area; the view is toward GZ and 

the protective revetments can be seen in the background. 

2.3.3 Data Reduction. All data recorded in the field -were of analog 

form on FM magnetic tape.  These were digitized at the rate of ?.k  kHz on an 

analog-to-digital converter at WES.  The digital data were then processed 

through a GE i)-00 digital computer which performed integrations and, where 

Ik 



necessary, baseline corrections, and were then plotted automatically by an 

on-line plotter. 

2.k    FIELD OPERATIONS 

Field operations for this project began immediately following the Min- 

eral Lode Event, which was detonated on 5 September 1969-  All field opera- 

tions, benefited by good weather and working conditions, proceeded smoothly, 

and the project was ready on 29 September 1969? 10 days preshot. 

?..k.l    Instrument Cables.  Cable runs of r>0-pair telephone-type cable 

were used for 2,700 feet from the recording van area toward GZ.  These 

cables had been installed for Events Mine Under and Mine Ore and were found 

to be serviceable.  About 300 feet from GZ, a junction box was Installed, 

and additional multipair cable was run to the far-out motion gageline where 

a second junction box was installed. From this point, individual ['our- 

conductor cable was run to each gage.  All individual gage cabl-s destined 

for a given location were then bundled together and were protected by pipe 

insulation of 1/2-inch wall thickness.  Cables between junction boxes and 

between the second junction box and instrument holes were placed in 

trenches 12 to 18 inches deep in the soil ove-'burden. Where subsurf 

rock prevented this, the cable was bedded in dry sand and covered with 

sandbags and native material. 

2.U.2 Gage Installation. All ground motion gages scheduled foi a 

particular location were installed in a single aluminum canister-.  The can- 

ister was constructed of 5-inch-outside-diameter by 1/2-inch-wall-thickness 

aluminum tubing, with end caps of 1/2-inch aluminum plate.  The bottom end 

cap had an aluminum gage mounting block welded in place. A placement stem 

was attached to the top cap.  Canisters were potted with paraffin after 

gage installation to dampen gage mount vibration and seal out m 

Overall canister length, not counting placement stem, was 10 ii :hes, and 

weight was 17 pounds P  ounces, giving a density of 171 pcf.  This compares 

favorably with the average rock density of l62 pcf. 

Figure 2.3a shows a canister bottom cap and gage mounting block with 

two velocity gages and two accelerometers installed. Figure 2.3b shows a 

typical assembled canister with placement stem attached. 

15 



Gage canisters were set in place using an aluminum placement tool, the 

bottom section of which contained a threaded coupling to fit the placement 

stem. After placement and orientation of a canister, grout designed to 

match the density and sonic velocity of tonalite was pumped until the can- 

ister was just covered.  The grout was then allowed to set, the placement 

tubing was removed, and grout was pumped to a point just below the next 

canister location.  The installation procedure was then repeated for this 

location. 

16 



TABLE 2.1 GROUND MOTION GAGE LAYOUT 

X denotes AV, AH; Y denotes AV, AH, UV, UH. 
AV--vertical acceleration; AH--horizontal 
acceleration; UV--vertical velocity; 
UH--horizontal velocity. 

Horizontal Gage Array at 
Distance Indicated Depth 

2 feet  10 feet 18 feet 

feet 

200 X X 

250 Y v Y 

300 >: X X 

Uoo X X X 

500 Y X X 

17 



a.  Plan 
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LEGEND 

X - AV.   AH 
Y       AV. UV.  AH    UH 
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Figure  2.1    Gage   layout. 

18 



bO 
:•: 

•H 
-d 
fn 
C 
O 
<D 

PC 

19 



u 
0) 

4 ' 

•H 

cd 
bfl 

Tj 
<D 
H 

1) 
w 

^ 

>5 
-I 

(;: 
ni 

SH 

<u 
•!-• 

w 
• I 

s 

fcfl 

u 
•,-1 

w 
0) 
bo   on 
ccJ 
bO    C\J 

-d 

4 

3 
c 
e 
tu 
•••:• 

a) 
O 

0) 

•H 

20 



CHAPTER 3 

RESULTS 

3.1 INSTRUMENT PERFORMANCE 

All gages checked out satisfactorily after installation, and all were 

operational at shot time.  Start signals were received at shot time, and 

calibration and recording equipment operated as programmed.  The Detonation 

Zero pulse was received and recorded on all tape machines. 

Of the 36 gages installed for the Mineral Rock Event, 3^- responded to 

the ground shock.  No data were received from Gages 500-2-UH and 500-10-AV. 

Seven particle velocity gages operated successfully and yielded data of ex- 

cellent quality.  The 27 accelerometers, however, were affected by electri- 

cal noise at 20 msec after detonation.  This noise persisted for about 15 

msec, and primarily affected records from the 300- and UOO-foot ground 

ranges. Attempts to remove the noise by digital filtering were unsuccess- 

ful since the noise was within the frequency band of the ground shock data 

itself. 

Some of the noise was removed by beginning data processing "nly after 

onset of the noise.  Data processing was begun at 25 msec after detonation 

for data from the 300-foot range, at 35 msec for the UOO-foot range, and at 

U5 msec for the 500-foot range.  These times were selected in order to skip 

as much noise as possible yet insure that little or no data were lost. 

That no real, or at least measurable, data were thus removed is borne out 

by the shock arrival time of 29 msec for the horizontal velocity gage at 

the 250-foot range and l8-foot depth. The minimum arrival at the 300-foot 

range would then be about 33 to 3'+ msec, or well after data processing had 

begun.  This procedure substantially improved the quality of record inte- 

grations by removing a large poi'tion of the noise-induced baseline shift. 

Some effects of this noise are still present in the first and second 

integrals, however. 

It is worth noting that onset of the noise coincides with air-blast ar- 

rival at the portions of the gage cable line which lie closer to 

the gageline itself (see Figure 2.1).  Since the pressures encountered 

could alter somewhat the electrical characteristics of the cable, the noise 
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was possibly shock generated.  It remains unresolved, however, why the ve- 

locity data were not affected, since the ac carrier system should be more 

sensitive to capacitive changes induced by squeezing than the dc 

accelerometer circuits. 

The 3^- successfully recorded time histories are presented in Appendix 

A along with first and second integrals.  The label in the upper right- 

hand corner of each record lists the event, gageline direction (east), and 

gage identification code, plus computer and data recall information. 

Marked on each record with an arrow labeled "AB" is the airblast arrival 

time at the surface above the gage. 

Peak values of measured parameters and integrals are presented in 

Table 3.1. 

3.2 ARRIVAL TIMES 

Arrival times of ground motion were unfortunately obscured by noise 

except for four of the velocity gages and the two accelerometers at the 

200-foot range and l8-foot depth. Arrival times for these gages are listed 

in Table 3-1-  Both of the accelerometers showed initial response at 16.8 

msec after detonation, indicating arrival of outrunning ground shock (the 

airblast arrived at this point some 2k  msec after detonation).  The average 

ground shock transmission velocity was 12,000 ft/sec to the 200-foot, range, 

and is in fair agreement with the 13,000 ft/sec determined by laboratory 

compression wave velocity tests.  Initial motion was detected on the hori- 

zontal velocity gages at the 250-foot range at 29, 30, and 32 msec for the 

18-, 10-, and 2-foot depths, respectively, while airblast arrival at this 

point was about U0 msec, again indicating the presence of outrunning motion. 

Average shock transmission velocity from GZ to Gage 250-18-UH was then 

8,500 ft/sec, which is considerably less than that calculated for the 

200-foot station. 

Outrunning motion was also noted at Gage 500-2-UV, where the arrival 

time was 62.k  msec, giving a transmission velocity of 8,000 ft/sec.  The 

difference may be attributed, at least in part, to the difficulty in pick- 

ing accurate arrival times for the velocity gages, which exhibit low 
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initial motions and long rise times.  It is worth noting also that the 

8,000- to 8,500-ft/sec velocities are in good agreement with da\a obtained 

on field seismic tests which reported velocities much less than those ob- 

tained on the laboratory specimens. It is also possible that reck jointing, 

which caused lower seismic velocities in the east-west direction than in the 

north-south direction, was locally most severe beyond the 200-foot range. 

Figure 3-1 is a plot of airblast-induced-motion arrival times at the 

2-foot depth and, where obtained, outrunning arrival times versus distance. 

The airblast-induced-motion arrival times are noted to agree well with the 

predicted airblast arrival itself and serve to substantiate the air't 

predictions since arrival times for airblast were not reported beyond the 

320-foot distance. 

3.3 ACCELERATION 

As mentioned previously, all acceleration channels were subjected, to 

some degree, to an extraneous electrical noise during the early portion of 

the ground motion.  This noise obscured the outrunning ground motion and, 

at the 200- and 250-foot ranges, was superposed on the airblast-induced 

motions.  Fortunately, the airblast-induced signals at these locations were 

of considerably greater amplitude than the noise signals.  This can be seen 

from the first two traces in Figure 3-2. At the 300-foot and k  0-foot sta- 

tions, initiation of data processing was delayed, thus eliminating most of 

the noise.  This process was used also at the 500-foot range; however, at 

this location signal amplitude was small enough that the noise is still 

quite apparent.  The waveforms seen in Figure 3-2 are characteristic of 

near-surface vertical accelerograms in rock, i.e., a sharp downward spike 

of very short rise time (generally less than 1 msec") followed I     i na- 

tions and/or an upward pulse. 

The record of Gage 500-2-AV shows a fairly well developed < ul running 

waveform, although the early portion is obscured.  After noise cessation at 

about 105 msec, the oscillatory, relatively long-period pulse of outrunning 

motion is evident, with the downward spike at airblast arrival superposed 

at 153 msec.  The downward acceleration due to airblast is noted to be of 

23 



larger magnitude and shorter duration than the immediately preceding out- 

running signal.  This was consistent throughout the array.  Figure 3-3 is 

a plot of peak downward vertical acceleration versus distance for all three 

depths instrumented.  Four vertical acceleration peaks measured at the 

2-foot depth on Event Mine Ore are included, and are generally in good 

agreement with the Mineral Rock data. 

Peak downward accelerations at the 2-foot depth are noted to attenuate 

rapidly with increasing distance.  This suggests the use of a correlation 

based on downward acceleration-to-overpressure ratios, which has also been 

found effective for accelerations in soil (Reference 8).  Figure 3-^ is a 

plot of this ratio versus overpressure for the five stations instrumented. 

Overpressures used in computing the ratios are listed in Table 3-2 

(Reference 9)• 

For the first four stations, 200, 250, 300, and U00 feet, the downward 

acceleration-to-overpressure ratios are 0.16, O.lU, 0.2U, and 0.20 g/psi, 

respectively. At the 500-foot range, the ratio drops off to 0.10, in con- 

trast to the pattern of increasing ratios at lesser overpressures usually 

observed in soil.  The 0.2-g/psi average ratio for the first four locations 

is considerably lower than the figure of 0.6 to 1.0 g/psi for similar pres- 

sure ranges noted for 100-ton detonations over soil (Reference 8).  This is 

consistent with elastic theory, which gives an inverse relationship between 

acceleration and seismic velocity for a constant rise time of stress.  The 

difference is not as great as the 10-fold difference that the seismic 

velocity ratio would suggest. 

Attenuation of peak downward vertical acceleration with depth is also 

apparent from Figure 3-3 and is consistent throughout the horizontal array. 

Peak values at the l8-foot depth ranged from 22 to 38 percent of those at 

the 2-foot depth.  This is in marked contrast to data in soil, where accel- 

erations at a depth of 17 feet average about 7 percent of near-surface 

(l.5-foot) data.  This fact emphasizes the effectiveness of an alluvial 

soil, such as encountered on the Distant Plain Series, as a filter of high- 

frequency motions, even though near-surface accelerations are larger at 

similar overpressures in soil. 
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Peak horizontal accelerations are plotted versus distance in Figure 

3-5.  The peak values plotted are peak outward accelerations neglecting ap- 

parent noise peaks.  In most cases, the peak values can be attributed to 

passage of the airblast, with two obvious exceptions being Gages 500-2-AH 

and 500-10-AH. At these locations, the acceleration signature was domi- 

nated by an outrunning motion of both greater magnitude and considerably- 

longer duration than the airblast-induced motion. A rapid attenuation with 

distance is again apparent, and, for the 2-foot depth, is about the same in 

rate as was noted for vertical accelerations.  The peak horizontal acceler- 

ations themselves, however, are consistently only '+0 to 60 percent, of the 

vertical peaks. 

Horizontal accelerations also attenuate sharply with depth.  Most of 

the attenuation appears to occur in the upper 10 feet of rock, with gen- 

erally only a small difference in peak values at 10- and l8-foot depths. 

This is in contrast to vertical measurements, where data at the l8-foot 

depth were consistently well below those at the 10-foot depth. 

3.U PARTICLE VELOCITY 

The number of particle velocity gages installed for this project was 

unfortunately small, especially in view of the high quality data yielded. 

Integrals of acceleration records, especially the early portions, are some- 

what suspect due to the noise problem.  See. for example, the first inte- 

gral of Gage 300-10-AH (Figure A.20) where integration of the noise 

produced a relatively spurious and erroneous initial velocity. 

Figure 3-6 shows, for comparison, the three vertical velocity records 

from the 250-foot ground range.  These records are typical of vertical ve- 

locities in the superseismic region, and indicate an absence of measurable 

vertical outrunning ground shock at this location.  The records are charac- 

terized by an initially downward pulse of width which increases with depth, 

followed by an upward motion of nearly uniform duration.  Also shown in 

Figure 3-6 is a composite vertical velocity record constructed from 

close-in data (Reference 6) from Mineral Rock which was obtained at dis- 

tances of kO  to 110 feet from GZ.  It is emphasized that the amplitudes in- 

dicated on the composite record are meaningless, even as a relative 
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indicator, since the amplitudes of various portions of the record are de- 

pendent on location. A striking similarity in wave shape is present, 

however, indicating that predominant features of the ground shock persist 

throughout the range of instrumentation.  Of interest here is the increased 

width of the initial downward pulse for the far-out data, which folLows the 

pattern set on close-in measurements.  The initial downward pulse, for ex- 

ample, was only of 1.8-msec duration at the 1+0-foot range, and had in- 

creased to h.&  msec at 110 feet, both at the 2-foot depth (Reference 6). 

The duration of this pulse had increased to 16 msec at the 250-foot loca- 

tion.  The subsequent upward and downward oscillation does not appear to 

have been affected by either depth or distance and retained a nearly uni- 

form period of 1^+0 msec at all distances and depths instrumented for both 

close-in and far-out programs. 

In contrast to 1 he apparently superseismic waveforms of Figure 3«6, 

the outrunning vertical velocity of Gage 500-2-UV is shown in Figure 3-7- 

Here the motion is initially upward and is oscillatory, with the downward 

airblast-induced pulse superimposed on the outrunning motion at about 155 

msec.  The outrunning motion is both larger and of longer period than the 

airblast-induced pulse at this location, and the wave shows significant os- 

cillation well beyond the airblast arrival.  Since this record indicates 

that significant vertical outrunning motion was present at this range, i1 

would be expected that similar motions would be observed at the 250-foot 

stations at corresponding times, i.e., about 30 msec.  It is also apparent 

that the magnitudes and frequencies are well within the capability of the 

velocity gage.  Significant horizontal outrunning motion was observed at 

the 250-foot range, as will be discussed later, so it must be concluded 

that the outrunning pulse, though present, had not developed a measurable 

(relative to airblast motion) vertical component at the 250-foot range. 

Peak downward vertical particle velocity is plotted versus distance in 

Figure 3-8»  Shown here are the four vertical velocity measurements along 

with integrals of vertical acceleration records.  In all cases where veloc- 

ity was measured directly, the peak downward motion was considerably less 

than that obtained from integrated accelerations.  This is in keeping with 

results from previous tests, although the low-frequency response of the 
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velocity gage  amplifiers,   as used on  this  experiment,  probably ated 

the problem. 

For  the most part,  downward velocities plotted in Figure  3-     are  as- 

sociated with passage of the  airblast  above   the point in question,  although 

ou1 cunning motions no doubt exert  some  influence  on  the peaks, 

the airblast  relative  to outrunning motion was  important at Stations   500-2 

and 500-18.     For example,   at Station  500-2,   the  airblast pulso iper- 

posed on  an upward cycle,   and no net downward motion  resulted.     Peak down- 

ward motions  for   this  station are  consequently not  associated with   I 

airblast. 

°cal velocities,   as  did  accelerations,   attenuated sharply   . 

distance,  at about  the  same  rate  for  the 2-foot depth as   the airblast over- 

pressure.     Downward velocities  at  the  2-foot depth correlate well with 

pressure,   and velocity-to-overpressure   ratios   range  from 0.012  to 

0.023 ft/sec/psi.     This  ratio  is  again less  than has been obsi al- 

luvial  soils where  ratios  in  this pressure  region  are  about C. ••/psi 

•'erence  8). 

Attenuation of the  downward velocities with depth is   less 

was  found f :el   ra   Ions,   and at  the 300-  and UOO-foot  ranges 

motions  are  greater than the  shallow ones.     This  can probably btrib- 

uted,   at  least   in part,   to   Integration  of noisy data.     The  three   Lir 

measured  velocities  at  the  250-foot  range,   for example,  do  ex] a de- 

crease  in amplitude  with  increasing depth,   as might be  expected, 

reinforces  their credibility,  at  least in  relation   to each    1 

average  fit  to  the  close-in velocity data  is  also  sb 

3.8.     Most of  the data  fall in  reas       ble proximity  to  ai 

close-in data,   although several points  appear be   rather  high.      < 

clear   'hat no gross  anomalies   in magnitudes  are present,   and  this   is   in 

turn   an   indicator of data  reliability. 

ire 3-'' shows horizontal particle  velocity-   :  te  hist vi the 

250-foot range.     The  first  of these,   for the  2-foot  depth,   is marked 

two features  which depart  from the pattern  set by the  two deeper   ;ta1 I 

First,  is the double pea . 'lie   Firs •• !  pulse       ' d at 

the deeper locations: .   it  did a] |  :ar ;ra] 

27 



also (Figure A.7).  The second anomalous occurrence is the series of 

fairly significant peaks at 160 to 180 msec after detonation.  This was not 

apparent to any extent on the integrated acceleration, and is thought to be 

a gage malfunction.  The remaining two records show a single smooth outward 

pulse of similar duration.  The last plot on Figure 3-9 is a composite hor- 

izontal velocity waveform constructed from close-in data (Reference 6). 

The amplitude is again arbitrary.  The period of this pulse averaged 50 

msec, which appears slightly shorter than on the far-out data, although 

the difference is not great. 

Figure 3-10 presents peak outward horizontal velocities versus  dis- 

tance for both direct measurements and integrals.  Much better agreement 

is immediately noted between peak values obtained by the two methods than 

was found for vertical data.  This follows the trend noted for close-in 

measurements and is probably due to the lower frequencies (longer initial 

pulses) for horizontal data which the velocity gages are better able to 

follow. 

Attenuation with range is similar to that found for vertical data, and 

follows a projection of close-in measurements quite well.  As a result, 

there appears to be approximately a one-to-one correspondence between hori- 

zontal and vertical peaks, at least within the data scatter. Attenuation 

with depth, although apparent, is not pronounced, and again is concentrated 

in the upper 10 feet of rock. 

3.5 DISPLACEMENT 

Vertical displacement peaks, as can be seen from Table 3-1, show con- 

siderable disparities between second integrals of acceleration and first 

integrals of velocity, and even between measurements at the same ground 

range.  Consequently, no plot of vertical displacement versus distance was 

constructed.  The three integrals of velocity measurements at the 250-foot 

range did produce displacements which were very consistent among themselves, 

ranging from 0.0060 foot at l8-foot depth to 0.0075 foot at 2-foot depth. 

This precision, together with the generally typical velocity waveforms from 

which they were derived, lends credence to the data at this point. 

Peak horizontal displacements are plotted versus distance in 
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Figure 3-Hj and with two readily apparent exceptions, plot nicely with a 

regular attenuation pattern.  Very little attenuation with depth is seen in 

Figure 3-tl* with a notable example being the data at 250-foot range where 

all six data points (three velocity integrals, three acceleration second 

integrals) all fall between 0.020 and 0.028 foot.  The horizontal peak 

displacement values all seem to fall somewhat above the average fit to 

close-in data.  It should be kept in mind, however, that the representative 

fit to the close-in data is an average, and data scatter would encompass 

the far-out peaks. 

Using the data at the 250-foot range as representative values, it is 

seen that horizontal displacements at this range are three to four times 

larger than the vertical.  Since peak velocities exhibited a one-to-one 

correspondence, the difference can be attributed to the longer durations of 

the horizontal particle velocities.  This, in turn, is brought about by the 

fact that horizontal airblast and outrunning velocity pulses reinforce each 

other (both outward), thus tending to lengthen outward pulse duration, 

while destructive interference may occur in vertical displacements 

depending on placing of the airblast and outrunning signals. 
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TABLE 3.1 PEAK GROUND MOTION DATA 

AV--vertical acceleration; AH--horizontal acceleration; UV--vertical velocity; 
UH--horizontal velocity. Positive .-notion is upward for vertical and outward for 
horizontal. 

Dit':.ance Depth Gage 
Type 

Arrival 
Time 

Accele] ration Veloc ity Displacement 

Positive Negative Positive Negative Positive Negative 

feet feet msec g's g's ft/sec ft/sec feet feet 

200 2 "7 — 23 32 O.llt 1.1+ 8 0.03 
AH -- 16.1+ •. 1.9 0.1+8 0.059 b 

18 AV 16.8 7-1 0.37 0.88 a O.OI6 
AH 16.8 1+.8 .! l.lt 0.52 0.01+ b 

250 p AV __ 8.9 15.6 0.3U 1.2 a 0.016 
uv — -- 0.27 0.72 0.002 0.0075 
AH -- 10.0 3-0 1.1+ 0.50 0.028 b 
UH 32.0 -- -- 1.2 0.1+0 0.026 b 

10 AV _- 3.1 1+.0 0.26 1.2 a 0.052 
UV -- -- -- 0.28 0.1+3 0.002 0.007 
AH -- 3.2 2.2 O.96 0.1+2 0.027 b 
UH 30.0 -- -- 0.85 b 0.026 b 

18 AV __ 2.2 2.8 0.39 0.62 0.005 0.012 
IV -- -- -- 0.28 -. 3lt 0.003 0.006 

AH -- 1+.6 1.8 O.76 0.15 0.023 b 
UH 29.0 -- -- 0.60 0.22 0.019 b 

300 2 AV — 10.it 12.0 ..''. 0.59 0.017 0.003 
AH — 6.0 0.72 O.76 .'.' :;•: b 

10 AV -- 2.1+ I+.2 0.51 0-72 •; 0.017 
AH -- 2.It 2.2 0.66 0.1+3 0.019 b 

18 AV -- 1.1. . 0.25 0.56 a 0.015 
AH -- 1.7 l.lt 0.62 0.53 0.C22 b 

i+oc 2 AV _- 6.0 6.0 0.3U 0.1+2 0.001 0.006 
AH -- 2.U 2.5 0.1+8 0.35 0.011+ b 

10 AV — 3-0 2.ft CJ.72 0.011+ 0.018 
Ail -- 1.1+ 1.1 . 0.1+0 0.009 0.008 

L8 AV — 2.0 1.5 0.38 0.59 0.001 0.011+ 
AH — 0.88 1.0 0.18 0.62 0.007 0.019 

500 2 AV -- 2.80 l.lt . 1 • 0.16 0.003 0.007 
UV 62.k -- -- 0.12 0.12 0.002 0.003 
AH -- O.58 o.it9 0.32 0.05 0.022 b 
UH — c -- -- -- -- -- 

LO AV -_ c __ __       
AH — C.58 0.60 0.1+8 0.10 O.O3I+ 1 

18 AV — 0.60 0.56 0.2b 0.13 0.008 b 
AH -- 0.66 0.52 0.1U 0.22 0.005 b 

No positive peak. 
No negative peak. 
No data. 
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TABLE 3-2 AIRBLAST OVERPRESSURES 

Distance Pressure 

feet psi 

200 190 

250 115 

300 h9 

Uoo 30.3 

500 15.0 

Remarks 

Predicted value 

Airblast Line 1 (North) 

Adjacent to ground shock instrument hole 

Adjacent to ground shock instrument hole 

Adjacent to ground shock instrument h )le 
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CHAPTER k 

CONCLUSIONS AND RECOMMENDATIONS 

U.l INSTRUMENT PERFORMANCE 

All 36 sages installed for this project were operable at shot time, in- 

dicating successful installation insofar as gage or cable damage was con- 

cerned. All channels calibrated properly, and recording systems operated 

correctly as programmed. Two gages (one accelerometer and one vel citj 

produced no readable output and are considered to have failed at shock ar- 

rival.  The remaining 27 accelerometers were all subjected to    rong 

electrical noise signal at 20 msec after the detonation.  This time 

noted to correspond to shock arrival at the nearest approach to IZ of the 

: Le line, and the noise was attributed to shock effects on the cable it- 

self, even though considerable cable protection precautions had been taken. 

The seven operable velocity gages wore  not affected. 

With the exception of the pressure-induced cable noise, th 3^ •' lc_ 

cessfully recorded gages showed good response.  The relatively ! ./- 

frequency response of the velocity gage-System D amplifier system :a   d 

problems in comparing vertical data with acceleration int 

e and recording system set ranges were sufficiently ace     :hat 

good signal amplitude was obtained on all channels. All signals .•, re well 

above normal system background noise, yet no channels were driven out of 

band. 

k.2    MOTION MEASUREMENTS 

Peak downward airbln.st-induced vertical accelerations were found to 

attenuate sharply with both distance and depth from the maximum /alue of 

3? g's at the POO-foot range and 2-foot depth.  Vertical airblas -induced 

accelerations were noted to correlate well with overpressure, averaging 

about 0.2 g/psi for the 2-foot depth.  This ratio is approximately one- 

fourth that for 100-ton detonations over soil. 

:ak horizontal accelerations were als    ••••ally associated with pas- 

sage of airblast and were approximately one-half the vertical peaks a1 the 
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2- and 10-foot depths; at the l8-foot depth, horizontal accelerations were 

about three-fourths the vertical. 

Downward airblast-induced vertical velocities attenuated with distance 

and depth, although attenuation with depth was less regular than for accel- 

erations.  This is attributed partially to the noisy accelerograms which 

did not produce very reliable integrals.  No measurable vertical outrunning 

velocity was noted at the 250-foot range. At the 500-foot range, however, 

the outrunning pulse had a significant vertical component of both greater 

magnitude and longer duration than the airblast-induced motion.  Horizontal 

velocities followed much the same pattern as did the vertical, and over the 

range instrumented were roughly equal to vertical peaks.  Horizontal veloc- 

ities generally showed considerable outrunning motion, with the airblast- 

induced pulse superposed on a long-duration outward pulse.  Relative veloc- 

ity contributions of the two pulses were quantitatively indeterminate, al- 

though due to its duration, the outrunning (directly induced) motion would 

be the primary source of displacements. 

Vertical displacement measurements of a high confidence level were 

limited to the 250-foot range.  Very little attenuation with depth was 

noted, with displacements ranging from 0.0075 foot at the 2-foot depth to 

0.0060 foot at the 18-foot depth.  Horizontal displacements were success- 

fully computed from both velocity and acceleration data. At the 250-foot 

range, they were three to four times as large as the vertical displacements. 

k.3 RECOMMEMDATIONS 

Recommendations for future work fall into two categories:  (l) changes 

or improvements in basic experiment design, and (2) changes in operational 

procedure. 

Under the first of these, it is recommended that a larger percentage 

of channel space on future tests be devoted to velocity gages.  This pro- 

vides generally more reliable displacement data and, except where acceler- 

ation data itself is of vital importance, should be the primary instrumen- 

tation. Where accelerations are required, velocity gages provide excellent 

back-up data. 

Additionally, instrument locations should be spread over as wide a 
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range of distance and depth as practical in order to adequately di 

attenua1ion patterns. 

Under the second category, the cable protection methods used for Min- 

•• ' Hock were apparently inadequate.  Since pressure effects had not been 

noticed on prior tests, protection from     a missiles was upperraosl '• 

mJnd, and cables were adequately protected from this hazard.  Pressure pro- 

ion for future tests could be offered by more judicious (t     "iore 

expensive) cable routing and by protection by encasing in pressu ••• -] 

material such as conduit. 
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APPENDIX A 

MOTION-TIME HISTORIES 
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